LEI ZHOU

EDUCATION

National University of Singapore

Jan 2021 - Present

Ph.D. in Mechanical Engineering (Advisor: Prof. Marcelo H. Ang Jr.)

• GPA: 4.33/5.00

Relevant Coursework: Machine Vision; Deep Learning for Robotics; Digital Human

Huazhong University of Science and Technology

Sep 2014 - Jun 2018

B.E. in Mechanical Engineering

• GPA: 3.80/4.00

CORE SKILLS

• Programming: Python, PyTorch, ROS.

- Computer Vision: Human Pose Estimation, 3D Reconstruction, Object Pose Estimation.
- Robotics: Robotic Grasping, Reinforcement Learning.
- Language: Mandarin (native), English (fluent).

WORK EXPERIENCE

Intern May 2024 – Present

Microsoft Research Asia – Beijing (Mentor: Jiaolong Yang)

- Contributing to Embodied AI research focusing on Vision-Language-Action (VLA) model pre-training and data scaling.
- Led development of a high-fidelity camera motion estimation and egoview hand mesh reconstruction pipeline for daily monocular egocentric videos. Achieved 1.4 cm Absolute Trajectory Error (ATE) by leveraging a spatio-temporal transformer for camera-space reconstruction and transforming results to world space using egoview camera motion.
- **Designed** a robust **multiview hand mesh reconstruction system** for the **EgoExo4D dataset** for high-quality 3D hand pose annotation regeneration, validating over **70%** of frames across **10 million samples** to support large-scale VLA model training.
- Engineered a Transformer-based reinforcement learning model for dexterous robotic grasping, achieving a 91.2% success rate on seen objects (88.3% on new categories) in simulation, and developed a real-sim-real pipeline integrating NeRF-based object reconstruction, improving real-world grasping performance.

Research Assistant Jan 2021 – May 2024

Advanced Robotics Centre, National University of Singapore

- Implemented Instant-NGP for 3D workspace geometry reconstruction, enhancing detection and localization capabilities for vertical farming robots, improving spatial awareness and task accuracy.
- Optimized control systems for **Franka Emika Panda** and **Kinova Movo**, streamlining integration with industrial applications.
- Created synthetic datasets and trained instance-level object pose estimation algorithms, facilitating
 robotic grasp generation and visual affordance detection in real-world applications, increasing task
 efficiency by 25%.

RESEARCH & PROJECT HIGHLIGHTS

Hand Mesh Reconstruction from Egocentric Videos

Nov 2024 – Present

- Developed a framework for recovering world-space hand motion from daily monocular egocentric videos.
- Utilized SLAM and depth estimation methods to achieve 1.4 cm Absolute Trajectory Error (ATE) in camera motion.
- Implemented a **spatio-temporal transformer-based approach** to reconstruct camera-space hand meshes from RGB image sequences.
- Transformed camera-space hand meshes to world space for accurate hand motion tracking.

Reinforcement Learning for Vision-Based Dexterous Robotic Grasping

Aug 2024 - Nov 2024

- Created a **universal Transformer-based model** via **offline distillation** from individually trained RL policies on **3,200 objects**.
- In simulation, it achieves up to a 91.2% success rate on seen objects (88.3% on new categories) in a state-based setting and 88.9% (86.8%) in a vision-based setting.
- Designed a real-sim-real pipeline integrating NeRF-based object reconstruction into RL environments.
 Captured real-world objects as meshes, trained grasping policies in simulation, and transferred them back for real-world testing.
- Achieved state-of-the-art performance, with a paper accepted by CVPR 2025.

Robust Multiview Hand Mesh Reconstruction

May 2024 - Aug 2024

- Tackled **severe occlusions** during human manipulation and **occasional camera time misalignment** in the EgoExo4D dataset by developing a **robust multiview hand reconstruction** pipeline.
- Applied triangulation-based optimization for multiview consistency, significantly improving reconstruction accuracy.
- **Incorporated smoothing techniques** to ensure temporal coherence across video frames, yielding high-precision 3D keypoint annotations despite challenging occlusions.
- Validated 70%+ of frames (10 million total) for 4D hand pose estimation and VLA model pretraining.

Diffusion-based Multi-Hands Robotic Grasp Generation

Nov 2023 - Mar 2024

- Developed a **diffusion-based model** to generate grasp poses for multiple robotic dexterous hands.
- Introduced visual affordance detection and open-vocabulary analysis to filter functional grasp candidates.
- Achieved 44.73% overall success rate on the MultiDex Dataset, improving generalization across multiple hand types, with a paper accepted by ISRR 2024.

Dynamic Scene Reconstruction for Robotic Grasping

Jun 2023 - Sep 2023

- Utilized **SDF-based methods** to reconstruct novel objects from multi-view images.
- Designed a **dynamic scene reconstruction pipeline** that completed object point clouds in real time (**9.2 FPS**) by leveraging tracked object poses.
- Achieved state-of-the-art performance on the GraspNet-1Billion benchmark for robotic grasping tasks, with a paper accepted by ICRA 2024.

Category-Level Object Pose Estimation

Jan 2022 - Mar 2023

- Developed a network that **completes partial point clouds** from depth camera data and **reconstructs objects** in canonical space by **deforming a shape prior**.
- Designed a robust **3D shape-matching module** to align reconstructed objects with observed partial point clouds for **pose and size estimation**.
- Achieved state-of-the-art performance, with a paper accepted by IROS 2023.

SELECTED PUBLICATIONS

- Wenbo Wang, Fangyun Wei, **Lei Zhou**, Xi Chen, Lin Luo, Xiaohan Yi, Yizhong Zhang, Yaobo Liang, Chang Xu, Yan Lu, Jiaolong Yang, and Baining Guo, "UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping", CVPR 2025
- Lei Zhou, Haozhe Wang, Zhengshen Zhang, Zhiyang Liu, Francis EH Tay, and Marcelo H. Ang Jr., "You Only Scan Once: A Dynamic Scene Reconstruction Pipeline for 6-DoF Robotic Grasping of Novel Objects", ICRA 2024
- Zhengning Zhou, Lei Zhou, Shengxin Sun, and Marcelo H. Ang Jr., "A Robust and Efficient Robotic Packing Pipeline with Dissipativity-Based Adaptive Impedance-Force Control", IROS 2024
- Zhiyang Liu, Ruiteng Zhao, Lei Zhou, Chengran Yuan, Yuwei Wu, Sheng Guo, Zhengshen Zhang, and Marcelo H. Ang Jr., "3D Affordance Keypoint Detection for Robotic Manipulation", IROS 2024
- Zhengshen Zhang, Lei Zhou, Chenchen Liu, Chengran Yuan, Sheng Guo, Ruiteng Zhao, Marcelo H. Ang Jr., and Francis EH Tay, "DexGrasp-Diffusion: Diffusion-Based Unified Functional Grasp Synthesis Method for Multi-Dexterous Robotic Hands", ISRR 2024
- Lei Zhou, Zhiyang Liu, Runze Gan, Haozhe Wang, and Marcelo H. Ang Jr., "DR-Pose: A Two-stage Deformation-and-Registration Pipeline for Category-level 6D Object Pose Estimation", IROS 2023